
Zhou and Luo Journal of Inequalities and Applications  (2018) 2018:137 
https://doi.org/10.1186/s13660-018-1728-5

R E S E A R C H Open Access

A Crank–Nicolson collocation spectral
method for the two-dimensional
telegraph equations
Yanjie Zhou1 and Zhendong Luo2*

*Correspondence:
zhdluo@ncepu.edu.cn
2School of Mathematics and
Physics, North China Electric Power
University, Beijing, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we mainly focus to study the Crank–Nicolson collocation spectral
method for two-dimensional (2D) telegraph equations. For this purpose, we first
establish a Crank–Nicolson collocation spectral model based on the Chebyshev
polynomials for the 2D telegraph equations. We then discuss the existence,
uniqueness, stability, and convergence of the Crank–Nicolson collocation spectral
numerical solutions. Finally, we use two sets of numerical examples to verify the
validity of theoretical analysis. This implies that the Crank–Nicolson collocation
spectral model is very effective for solving the 2D telegraph equations.
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1 Introduction
Because any bounded closed domain � in R

2 can be approximately filled with several
rectangles [ai, bi] × [ci, di] (i = 1, 2, . . . , I), for convenience and without losing universality,
we just assume that � = [a, b] × [c, d] ⊂R

2 with boundary ∂� and consider the following
two-dimensional (2D) telegraph equations:

⎧
⎪⎪⎨

⎪⎪⎩

utt – μ�u + αut + βu = f (x, y, t), (x, y, t) ∈ � × [0, T],

u(x, y, t) = ϕ(x, y, t), (x, y, t) ∈ ∂� × [0, T],

u(x, y, 0) = H(x, y), ut(x, y, 0) = G(x, y), (x, y) ∈ �,

(1)

where u is the unknown function, utt = ∂2u/∂t2, � = ∂2/∂x2 + ∂2/∂y2 is the Laplace opera-
tor, T is the final time, f (x, y, t), ϕ(x, y, t), H(x, y), and G(x, y) are four given functions, and
μ = (LĈ)–1, α = GRμ, and β = (RĈ + GL)μ are three known positive constants because G is
the conductance of the dielectric material, R is the distributed resistance of the conductor,
L is the distributed inductance, and Ĉ is the capacitance between the two conductors. For
convenience, but without losing generality, we further assume that ϕ(x, y, t) = 0.

The telegraph equations have a very significant physical background, so that they have
become a type of important evolution partial differential equations (PDEs) and have been
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successfully used in many numerical simulations in mathematical and physical problems
used to describe the propagation of an electric signal in a cable of transmission line and
wave phenomena. Especially, they can be suitable for modeling the interaction between
reaction and diffusion in physics and biology (see [1, 2]). Therefore, the study for the tele-
graph equations has significant meaning. However, the telegraph equations in the real-
world problems usually include the complex known data, such as the complicated initial
and boundary value conditions, the intricate source term, the discontinuous coefficients,
so that they have no analytic solution. Thus we have to rely on numerical solutions.

The finite difference scheme (FDS), the finite element method (FEM), the finite volume
element method (FVEM), and the spectral method are regarded to be four most popular
methods, but the accuracy of the spectral method is highest in the four numerical meth-
ods because it adopts smooth functions (such as trigonometric functions, Chebyshev’s
polynomials, Jacobi’s polynomials, and Legendre’s polynomials) to approximate unknown
function, whereas FEM and FVEM usually adopt standard polynomials to approximate
an unknown function, and FDS adopts difference quotient to approximate derivative. Par-
ticularly, with rapid development of computers, the spectral method has achieved great
success in many numerical computing fields (see, e.g., [3, 4]). The spectral method is a
weighted residual way for PDEs and generally is classified as the Galerkin spectral method,
the spectral tau method, and the collocation spectral (CS) method, which are used to solve
many PDEs including the second-order elliptic equations, parabolic equations, hyperbolic
equations, and hydromechanics equations (see, e.g., [3–9]).

Although FDS, FEM, and FVEM have been used to solve the telegraph equations (see [1,
2, 10–16]), as far as we know, the spectral method, especially the CS method, has yet not
been used to solve the 2D telegraph equations. Therefore, in this paper, we first develop
a Crank–Nicolson CS (CNCS) model for the 2D telegraph equations. Then we analyze
the existence, uniqueness, stability, and convergence for the CNCS solutions. Finally, we
utilize some numerical simulations to verify the validity of theoretical analysis. It shows
that the CNCS model is very valid for solving the 2D telegraph equations.

The remaining contents in this paper are scheduled as follows. In Sect. 2, we first re-
view the spectral-collocation method and some Sobolev spaces. Then, in Sect. 3, we build
the CNCS model for the 2D telegraph equations and analyze the existence, uniqueness,
stability, and convergence of the CNCS solutions. Next, in Sect. 4, we use two sets of nu-
merical examples to verify that the results of numerical computations are accorded with
the theoretical analysis and to certify that the CNCS model is very valid for solving the 2D
telegraph equations. Finally, we supply the main conclusions and discussion in Sect. 5.

2 The CS method and some useful Sobolev spaces
2.1 The CS method
Let PN be an interpolation subspace in a one- or two-dimensional space. The CS method
consists in that the solution u of PDE is approximated with the interpolation polyno-
mial uN in PN , whose interpolation nodes adopt the so-called Chebyshev–Gauss–Lobatto
(CGL) points (see [4]).

The Chebyshev polynomials are some special Jacobi polynomials, which are orthogonal
with the Chebyshev weight function ω(x) = 1/

√
1 – x2 over [–1, 1], namely,

∫ 1

–1
Tm(x)Tn(x)ω(x) dx = γnδm,n,
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where

γn = ‖Tn‖2
ω =

∫ 1

–1
T2

n (x)ω(x) dx.

Let {xj}N
j=0 and {yk}N

k=0 be two sets of space nodes, that is, the CGL points in x and y
directions, respectively, and let {ωk}N

k=0 be a set of weights. They are, respectively, defined
by

xk = – cos
πk
N

, yk = – cos
kπ

N
, ωk =

π

ckN
, 0 ≤ k ≤ N , (2)

where c0 = cN = 2 and ck = 1 (k = 1, 2, . . . , N – 1). They have the following property (see,
e.g., [3]).

Theorem 1 Let {xk}N
k=0, {yk}N

k=0, and {ωk}N
k=0 be the sets of CGL quadrature nodes and

weights, respectively. Then

∫ 1

–1

∫ 1

–1
p(x, y)ω(x)ω(y) dx dy =

N∑

j=0

N∑

k=0

p(xj, yk)ωjωk , ∀p(x, y) ∈ P2N–1. (3)

More specifically, the CS basic principle is to get an approximate solution for u(x, y) by
a sum

uN (x, y) =
N∑

j=0

N∑

k=0

uN (xj, yk)hj(x)hk(y), (4)

where uN (x, y) ∈ PN , the interpolation nodes {xj}N
j=0 and {yk}N

k=0 are the CGL points given
by (2), and {hj(x)}N

j=0 and {hk(y)}N
j=0 are the Lagrange basis polynomials associated with the

sets of the CGL points {xj}N
j=0 and {yk}N

k=0, respectively.
Moreover, the derivative of uN (x, y) at xk is obtained by

∂uN (xk , y)
∂x

=
N∑

j=0

N∑

l=0

uN (xj, yl)h′
j(xk)hl(y), 0 ≤ k ≤ N , (5)

where the first-order derivative h′
j(xk) at the CGL points can be computed by the following

formulas:

h′
j(xk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– 2N2+1
6 , k = j = 0,

ck
cj

(–1)k+j

xk –xj
, k 
= j, 0 ≤ k, j ≤ N ,

– xk
2(1–x2

k ) , 1 ≤ k = j ≤ N – 1,
2N2+1

6 , k = j = N ,

(6)

where c0 = cN = 2 and ck = 1 (k = 1, 2, . . . , N – 1). By replacing x in (5) and (6) with y, we
easily obtain the computational formulas of ∂uN (x, yk)/∂y.
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2.2 Some useful Sobolev spaces
First, we supply several useful Sobolev spaces, whose detailed descriptions can be found
in [17].

Let � ∈R
2 be a bounded open domain with boundary ∂�, and let L2(�) denote the set

of all square-integrable functions defined on �, equipped with inner product and norm

(u, v) =
∫

�

uv dx dy and ‖u‖0 =
(∫

�

|u|2 dx dy
)1/2

, ∀u, v ∈ L2(�).

For a nonnegative integer m and α = (α1,α2) (where αi ≥ 0 are integers, and |α| = α1 +α2),
define

Hm(�) =
{

u ∈ L2(�) : Dαu ∈ L2(�), 0 ≤ |α| ≤ m
}

,

equipped with norm and seminorm

‖u‖m =
( ∑

0≤|α|≤m

∥
∥Dαu

∥
∥2

0

)1/2

and

|u|m =
( ∑

|α|=m

∥
∥Dαu

∥
∥2

0

)1/2

,

where Dαu = ∂ |α|u
∂xα1 ∂yα2 . Set Hm

0 (�) = {u ∈ Hm(�) : Dαu(x)|∂� = 0, |α| < m} and let H–m(�)
denote the dual space of Hm

0 (�).
Further, let ω =: ω(x, y) = ω(x)ω(y) = 1/

√
(1 – x2)(1 – y2), � = (–1, 1)2, and let L2

ω(�) de-
note the set of all square-integrable functions defined on �, equipped with norm

‖u‖0,ω =
(∫

�

|u|2ω dx dy
)1/2

,

and let Hm
ω (�) := {u ∈ L2

ω(�) : Dαu ∈ L2
ω(�), 0 ≤ |α| ≤ m} be the weighted Sobolev space

on � with the CGL quadrature weight function, equipped with the norm

‖u‖m,ω =
( ∑

0≤|α|≤m

∥
∥Dαu

∥
∥2

0,ω

) 1
2

.

Furthermore, let H1
0,ω(�) = {u ∈ H1

ω(�) : u|∂� = 0}, (·, ·)ω denote the weighted inter product
of L2

ω(�) = H0
ω(�), and let ‖ · ‖Hl(Hm

ω ) be the norm in the space

Hl(0, T ; Hm
ω (�)

) ≡
{

v(t) ∈ Hm
ω (�) : ‖v‖2

Hl(Hm
ω ) ≡

∫ T

0

l∑

i=0

∥
∥
∥
∥

di

dti v(t)
∥
∥
∥
∥

2

m,ω
dt < ∞

}

.

Next, define the H1
ω-orthogonal projection RN : H1

0,ω(�) → PN such that, for any u ∈
H1

0,ω(�),

(∇(RN u – u),∇v
)

ω
= 0, ∀v ∈ PN ,
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or, equivalently,

uN (x, y) = RN u(x, y) =
N∑

j=0

N∑

k=0

uN (xj, yk)hj(x)hk(y). (7)

Therefore we can also approximate the unknown solution u(x, y) with RN u(x, y). Further,
RN has the following important property (see [4, Chapter III]).

Theorem 2 For any u ∈ Hq
ω(�) with q ≥ 1, we have

‖∇RN u‖0,ω ≤ ‖∇u‖0,ω,
∥
∥∂k(RN u – u)

∥
∥

0,ω ≤ CNk–q, 0 ≤ k ≤ q ≤ N + 1,

where C is a general positive constant independent of N and �t and used subsequently.

Finally, we provide several formulas used often in the following discussions.
(1) The Poincaré inequality. There exist a constant Cp such that

Cp‖u‖m ≤ |u|m ≤ ‖u‖m, ∀u ∈ Hm
0 (�).

(2) The Hölder inequality.

∫

�

|uv|dx dy ≤
(∫

�

|u|2 dx dy
) 1

2
(∫

�

|v|2 dx dy
) 1

2
, ∀u, v ∈ L2(�).

(3) Green’s formula.

∫

�

v�u dx dy = –
∫

�

∇u · ∇v dx dy +
∫

∂�

v
∂u
∂n

ds, ∀u ∈ H2(�),∀v ∈ H1(�),

where �u = ∂2u/∂x2 + ∂2u/∂y2, ∇u = (∂u/∂x, ∂u/∂y), and n is the unit outer normal
vector on ∂�.

(4) The Cauchy inequality.

ab ≤ εa2

2
+

b2

2ε
, ∀a ≥ 0, b ≥ 0, ε > 0.

3 The CNCS method for the 2D telegraph equations
3.1 The analysis of the existence, uniqueness, and stability of weak solutions for

the 2D telegraph equations
Since by using transforms x′ = –1 + 2(x – a)/(b – a) and y′ = –1 + 2(y – c)/(d – c) we can
ensure [a, b] ↔ [–1, 1] and [c, d] ↔ [–1, 1], respectively, for convenience, we can assume
that a = c = –1 and b = d = 1 in the subsequent discussions. By using Green’s formula we
can obtain the following weak form for the 2D telegraph equations (1).

Problem 3 Find u ∈ H2(0, T ; H1
0,ω(�)) such that

⎧
⎨

⎩

(utt , v)ω + μ(∇u,∇v)ω + α(ut , v)ω + β(u, v)ω = (f , v)ω, ∀v ∈ H1
0,ω(�),

u(x, y, 0) = H(x, y), ut(x, y, 0) = G(x, y), (x, y) ∈ �.
(8)
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In the following, we employ the variational principle (see, e.g., [3, 4]), and the Hölder
and Cauchy inequalities to analyze the existence, uniqueness, and stability of the weak
solution for Problem 3. We have the following main conclusion.

Theorem 4 If f ∈ L2(0, T ; L2
ω(�)), G ∈ L2

ω(�), and H ∈ H1
ω(�), then there exists a unique

generalized solution u ∈ H2(0, T ; H1
0,ω(�)) for the variational formulation (8) satisfying the

following stability:

‖ut‖0,ω + ‖u‖1,ω ≤ C̃
(‖G‖0,ω + ‖H‖1,ω + ‖f ‖L2(H–1

ω )
)
, (9)

where C̃ = 2
√

max{1,β , 1/(2α)}/ min{μ,β}.

Proof Because (8) is equivalent to (1) and the system of equations (1) has a generalized
solution u of other form, just as obtained in [10], which is a solution in (8), it is only nec-
essary to demonstrate the uniqueness. Thus, we only need to prove that equation (8) has
only a zero solution when f (x, y, t) = H(x, y) = G(x, y) = 0.

Taking v = ut in the first formula of equation (8), we have

d‖ut‖2
0,ω

2 dt
+ μ

d‖∇u‖2
0,ω

2 dt
+ α‖ut‖2

0,ω + β
d‖u‖2

0,ω

2 dt
= (f , ut)ω. (10)

By integrating (10) from 0 to t ∈ [0, T] and by the Hölder and Cauchy inequalities we
obtain

‖ut‖2
0,ω + μ‖∇u‖2

0,ω + 2α

∫ t

0
‖ut‖2

0,ω dt + β‖u‖2
0,ω

= ‖G‖2
0,ω + ‖∇H‖2

0,ω + β‖H‖2
0,ω + 2

∫ t

0
(f , ut)ω dt

≤ ‖G‖2
0,ω + ‖∇H‖2

0,ω + β‖H‖2
0,ω +

1
2α

∫ t

0
‖f ‖2

0,ω dt + 2α

∫ t

0
‖ut‖2

0,ω dt. (11)

Therefore, when f (x, y, t) = H(x, y) = G(x, y) = 0, we obtain ‖u‖0,ω = ‖∇u‖0,ω = 0, which
implies u = 0, that is, equation (8) has a unique weak solution u ∈ H1

0,ω(�). Further, from
(11) we obtain (9). This completes the proof of Theorem 4. �

3.2 The CNCS method for the 2D telegraph equations
3.2.1 The establishment of the CNCS model
To establish the CNCS model for the 2D telegraph equations, it is necessary to discretize
utt and ut by means of the second-order difference quotient and spatial variables by means
of the CNCS method. For this purpose, let {xj}N

j=0 and {yk}N
k=0 be the space nodes in x and

y directions, respectively, with

xj = – cos
jπ
N

, yk = – cos
kπ

N
,

where the positive integer N denotes the number of nodes in a certain direction. For inte-
ger K > 0, let �t = T/K be the time step, that is, K�t = T . We approximate u(x, y, n�t) with
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un, ut with (un+1 – un–1)/(2�t), utt with (un+1 – 2un + un–1)/�t2, and un(x, y) with un
N (x, y),

namely,

un(x, y) ≈ un
N (x, y) =

N∑

j=0

N∑

k=0

un
N (xj, yk)hj(x)hk(y), 0 ≤ n ≤ K .

Thus, we can establish the following CNCS model for the 2D telegraph equations.

Problem 5 Find un
N ∈ UN ≡ H1

0,ω(�) ∩ PN such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(un+1
N – 2un

N + un–1
N , vN )ω + μ�t2

2 (∇un+1
N + ∇un–1

N ,∇vN )ω
+ α�t

2 (un+1
N – un–1

N , vN )ω + β�t2

2 (un+1
N + un–1

N , vN )ω
= �t2(f (tn), vN )ω, ∀vN ∈ UN , 1 ≤ n ≤ K – 1,

u0
N (x, y) = RN G(x, y), u1

N (x, y) = u0
N + 2�tRN H(x, y), (x, y) ∈ �,

(12)

where f (tn) = f (x, y, tn).

3.2.2 The analysis of the existence, uniqueness, and stability of the CNCS solutions
We further employ the Lax–Milgram theorem (see, e.g., [3]) and the Hölder and Cauchy
inequalities to analyze the existence, uniqueness, and stability for the CNCS solutions. We
have the following main conclusion.

Theorem 6 If f ∈ L2(0, T ; L2
ω(�)), G ∈ H1

ω(�), and H ∈ H1
ω(�), then there exists a unique

sequence of solutions un
N ∈ UN (n = 1, 2, . . . , K) for the CNCS model (12) satisfying the fol-

lowing stability:

∥
∥un

N
∥
∥

1,ω ≤
( 8 + μC2

p + β

C2
p min{μ,β}

)1/2(‖∇H‖0,ω + ‖∇G‖0,ω
)

+

(
�t

α min{μ,β}
n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω

)1/2

, n = 1, 2, . . . , K . (13)

Proof Set A(u, v) = (u, v)ω + μ�t2

2 (∇u,∇v)ω + α�t
2 (u, v)ω + β�t2

2 (u, v)ω and F(v) = �t2(f (tn),
v)ω + (2un

N – un–1
N , v)ω – μ�t2

2 (∇un–1
N ,∇v)ω + α�t

2 (un–1
N , v)ω – β�t2

2 (un–1
N , v)ω . Then Problem 5

can be rewritten as the following:

Problem 7 Find un
N ∈ UN ≡ H1

0,ω(�) ∩ PN such that

⎧
⎨

⎩

A(un+1
N , vN )ω = F(vN )ω, ∀vN ∈ UN , 1 ≤ n ≤ K – 1,

u0
N (x, y) = RN G(x, y), u1

N (x, y) = u0
N + 2�tRN H(x, y), (x, y) ∈ �.

(14)

It is obvious that A(·, ·) is a bounded and positive definite bilinear functional on UN and,
for given f (tn), un

N , and un–1
N , F(·) is a bounded linear functional on UN . Thus, by the Lax–

Milgram theorem (see, e.g., [3]) Problem 7 has a unique sequence of solutions un
N ∈ UN

(n = 1, 2, . . . , K).
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By taking vN = un+1
N – un–1

N in the first equation of (14), with the Hölder and Cauchy
inequalities, we have

∥
∥un+1

N – un
N
∥
∥2

0,ω –
∥
∥un

N – un–1
N

∥
∥2

0,ω +
μ�t2

2
(∥
∥∇un+1

N
∥
∥2

0,ω–
∥
∥∇un–1

N
∥
∥2

0,ω

)

+
α�t

2
∥
∥un+1

N – un–1
N

∥
∥2

0,ω +
β�t2

2
(∥
∥un+1

N
∥
∥2

0,ω –
∥
∥un–1

N
∥
∥2

0,ω

)

= �t2(f (tn), un+1
N – un–1

N
)

0,ω

≤ �t3

2α

∥
∥f (tn)

∥
∥2

0,ω +
α�t

2
∥
∥un+1

N – un–1
N

∥
∥2

0,ω. (15)

From (15) we obtain

∥
∥un+1

N – un
N
∥
∥2

0,ω –
∥
∥un

N – un–1
N

∥
∥2

0,ω

+
μ�t2

2
(∥
∥∇un+1

N
∥
∥2

0,ω –
∥
∥∇un–1

N
∥
∥2

0,ω

)
+

β�t2

2
(∥
∥un+1

N
∥
∥2

0,ω –
∥
∥un–1

N
∥
∥2

0,ω

)

≤ �t3

2α

∥
∥f (tn)

∥
∥2

0,ω. (16)

Summing (16) from 1 to n and using the second formula of (14), we obtain

∥
∥un+1

N – un
N
∥
∥2

0,ω +
μ�t2

2
(∥
∥∇un+1

N
∥
∥2

0,ω +
∥
∥∇un

N
∥
∥2

0,ω

)
+

β�t2

2
(∥
∥un+1

N
∥
∥2

0,ω +
∥
∥un

N
∥
∥2

0,ω

)

≤ ∥
∥u1

N – u0
N
∥
∥2

0,ω +
μ�t2

2
(∥
∥∇u1

N
∥
∥2

0,ω +
∥
∥∇u0

N
∥
∥2

0,ω

)

+
β�t2

2
(∥
∥u1

N
∥
∥2

0,ω +
∥
∥u0

N
∥
∥2

0,ω

)
+

�t3

2α

n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω

≤ 4�t2

C2
p

‖∇RN H‖2
0,ω +

μ�t2

2
(‖∇RN H‖2

0,ω + ‖∇RN G‖2
0,ω

)

+
β�t2

2C2
P

(‖∇RN H‖2
0,ω + ‖∇RN G‖2

0,ω
)

+
�t3

2α

n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω

≤
(

4�t2

C2
p

+
μ�t2

2
+

β�t2

2C2
P

)
(‖∇H‖2

0,ω + ‖∇G‖2
0,ω

)

+
�t3

2α

n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω, n = 1, 2, . . . , K – 1. (17)

Thus from (17) we obtain ‖∇un
N‖ω = ‖un

N‖ω = 0 (n = 1, . . . , K ) when H(x, y) = G(x, y) =
f (x, y, t) = 0, which implies un

N = 0 (n = 1, 2, . . . , K ). In other words, the CNCS model (14)
has a unique series of solutions. From (17) we immediately attain (13). This completes the
proof of Theorem 6. �

3.2.3 The analysis of convergence of the CNCS solutions
In the following, we employ the CS method in Sect. 2 and the Hölder and Cauchy in-
equalities to analyze the convergence for the CNCS solutions of Problem 5. We have the
following main conclusion.
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Theorem 8 Under the conditions of Theorem 6, the errors between the solution for Prob-
lem 3 and the series of solutions of Problem 5 have the following estimates:

∥
∥u(tn) – un

N
∥
∥

1,ω ≤ C
(
�t2 + N–2), 1 ≤ n ≤ K , (18)

where C is a general positive constant independent to N and �t.

Proof If ut is approximated with (un+1 – un–1)/2�t and utt is approximated with (un+1 –
2un + un–1)/�t2, then we obtain the following semidiscretized formulation of equation (8)
in time:

⎧
⎪⎪⎨

⎪⎪⎩

(un+1 – 2un + un–1, v)ω + μ�t2

2 (∇un+1 + ∇un–1,∇v)ω + α�t
2 (un+1 – un–1, v)ω

+ β�t2

2 (un+1 + un–1, v)ω = �t2(f (tn), v)ω, ∀v ∈ U , 1 ≤ n ≤ K – 1,

u0(x, y) = G(x, y), u1(x, y) = H(x, y), (x, y) ∈ �,

(19)

Let en
1 = u(tn) – un, en

2 = un – RN un, and en
3 = RN un – un

N .
(1) First, estimate en

1 .
At time t = tn, by applying Taylor’s expansion to (8) and subtracting (19), taking

v = en+1
1 – en–1

1 , using Green’s formula and the Hölder and Cauchy inequalities, we
obtain

∥
∥en+1

1 – en
1
∥
∥2

0,ω –
∥
∥en

1 – en–1
1

∥
∥2

0,ω +
μ�t2

2
(∥
∥∇en+1

1
∥
∥2

0,ω –
∥
∥∇en–1

1
∥
∥2

0,ω

)

+ α�t
∥
∥en+1

1 – en–1
1

∥
∥2

0,ω + β�t2(∥∥en+1
1

∥
∥2

0,ω –
∥
∥en–1

1
∥
∥2

0,ω

)

=
�t4

12
(
utttt

(
ξn

1
)
, en+1

1 – en–1
1

)

ω
–

μ�t4

2
(
�utt

(
ξn

2
)
, en+1

1 – en–1
1

)

ω

+
α�t4

6
(
uttt

(
ξn

3
)
, en+1

1 – en
1
)

ω
+

β�t4

2
(
utt

(
ξn

2
)
, en+1

1 – en–1
1

)

ω

≤ α�t
∥
∥en+1

1 – en–1
1

∥
∥2

0,ω +
�t7

144α

∥
∥utttt

(
ξn

1
)∥
∥2

0,ω +
μ2�t7

4α

∥
∥�utt

(
ξn

2
)∥
∥2

0,ω

+
α�t7

36
∥
∥uttt

(
ξn

3
)∥
∥2

0,ω +
β2�t7

4α

∥
∥utt

(
ξn

2
)∥
∥2

0,ω, (20)

where tn ≤ ξn
1 , ξn

2 , ξn
3 ≤ tn+1. Because e1

1 = e0
1 = 0, simplifying and summing (20) from

1 to n, we obtain

2
∥
∥en+1

1 – en
1
∥
∥2

0,ω + �t2(∥∥∇en+1
1

∥
∥2

0,ω +
∥
∥∇en

1
∥
∥2

0,ω

)
+ 2β�t2(∥∥en+1

1
∥
∥2

0,ω +
∥
∥en

1
∥
∥2

0,ω

)

≤ C2(u)min{μ, 2β}�t6, (21)

where

C2(u) =
1

72α min{μ, 2β}
[∥
∥utttt

(
ξn

1
)∥
∥2

0,ω + 18μ2∥∥�utt
(
ξn

2
)∥
∥2

0,ω

+ 4α2∥∥uttt
(
ξn

3
)∥
∥2

0,ω + 36β2∥∥utt
(
ξn

2
)∥
∥2

0,ω

]
.
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Further, we obtain

∥
∥en

1
∥
∥

1,ω ≤ C(u)�t2. (22)

(2) Next, estimate e2.
The estimate of e2 can be immediately obtained by Theorem 2, that is, when

un ∈ H3(�),

∥
∥en

2
∥
∥

1,ω ≤ CN–2, n = 1, 2, . . . , K . (23)

(3) Finally, estimate e3 = RN un – un
N .

Subtracting Problem 5 from (19) taking v = vN ∈ UN , we obtain

(
un+1 – un+1

N – 2
(
un – un

N
)

+ un–1 – un–1
N , vN

)

ω

+
μ�t2

2
(∇(

un+1 – un+1
N

)
+ ∇(

un–1 – un–1
N

)
,∇vN

)

ω

+
α�t

2
(
un+1 – un+1

N –
(
un–1 – un–1

N
)
, vN

)

ω

+
β�t2

2
(
un+1 – un+1

N + un–1 – un–1
N , vN

)

ω

= 0, ∀vN ∈ UN , (24)

By Theorem 2, (24), the property of RN , the Hölder and Cauchy inequalities, and
Taylor’s formula we have

∥
∥en+1

3 – en
3
∥
∥2

0,ω –
∥
∥en

3 – en–1
3

∥
∥2

0,ω +
μ�t2

2
(∥
∥∇en+1

3
∥
∥2

0,ω –
∥
∥∇en–1

3
∥
∥2

0,ω

)

+
α�t

2
∥
∥en+1

3 – en–1
3

∥
∥2

0,ω + β�t2(∥∥en+1
3

∥
∥2

0,ω –
∥
∥en–1

3
∥
∥2

0,ω

)

=
(
un+1 – 2un + un–1 –

(
un+1

N – 2un
N + un–1

N
)
, en+1

3 – en–1
3

)

ω

+
(
RN un+1 – un+1 – 2

(
RN un – un) +

(
RN un–1 – un–1), en+1

3 – en–1
3

)

ω

+
μ�t2

2
(∇(

un+1 – un+1
N

)
+ ∇(

un–1 – un–1
N

)
,∇(

en+1
3 – en–1

3
))

ω

+
μ�t2

2
(∇(

RN un+1 – un+1) + ∇(
RN un–1 – un–1),∇(

en+1
3 – en–1

3
))

ω

+
β�t2

2
(
un+1 – un+1

N + un–1 – un–1
N , en+1

3 – en–1
3

)

ω

+
β�t2

2
(
RN un+1 – un+1 + RN un–1 – un–1, en+1

3 – en–1
3

)

ω

=
(
RN un+1 – un+1 – 2

(
RN un – un) +

(
RN un–1 – un–1), en+1

3 – en–1
3

)

ω

+
β�t2

2
(
RN un+1 – un+1 + RN un–1 – un–1, en+1

3 – en–1
3

)

ω

≤ α�t
2

∥
∥en+1

3 – en–1
3

∥
∥2

0,ω + C�t3N–4, n = 0, 1, . . . , K – 1. (25)
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Because e1
3 = e0

3 = 0, summing (25) from 1 to n, we get

∥
∥en+1

3 – en
3
∥
∥2

0,ω +
μ�t2

2
(∥
∥∇en+1

3
∥
∥2

0,ω +
∥
∥∇en

3
∥
∥2

0,ω

)
+ β�t2(∥∥en+1

3
∥
∥2

0,ω +
∥
∥en

3
∥
∥2

0,ω

)

≤ C�t2N–4, n = 1, 2, . . . , K . (26)

Thus we obtain

∥
∥en

3
∥
∥

1,ω ≤ CN–2, n = 1, 2, . . . , K . (27)

By combining (22)–(23) with (27) we get (18). This completes the proof of
Theorem 8. �

Remark 1 Theorems 6 shows that in the CNCS model, that is, Problem 5, for the 2D tele-
graph equations, there exists a unique series of the solutions that is stable and continuously
depends on the initial value and source functions. In order that the error estimates in The-
orem 8 attain an optimal order, it is necessary to take the time-step �t and N satisfying
�t � N–1. This theoretically ensures that Problem 5 is effective and reliable for solving
the 2D telegraph equations.

4 Numerical experiments
In this section, we utilize two sets of numerical experiments to verify the correction of the
theoretical results of the CNCS model, that is, Problem 5, for the 2D telegraph equations.
These numerical examples are implemented by Matlab software in Laptop (Microsoft Sur-
face Book: Int Core i7 Processor, 16 GB RAM).

4.1 Example 1
In the 2D telegraph equation (1), we take �̄ = [–1, 1]×[–1, 1]; L = Ĉ = R = G = 1, that is, α =
1, β = 2, μ = 1; ϕ(±1, y, t) = (1 – cos 2πy) exp(–t) (–1 ≤ y ≤ 1 and t ∈ [0,∞)), ϕ(x,±1, t) =
(1 – cos 2πx) exp(–t) (–1 ≤ x ≤ 1 and t ∈ [0,∞)), H(x, y) = 1 – cos 2πx cos 2πy, G(x, y) =
cos 2πx cos 2πy – 1, and f (x, y, t) = 3 exp(–t) + (8π2 – 3) cos 2πx cos 2πy exp(–t). Thus we
can find the following analytical solutions for the telegraph equations (1):

u(x, y, t) = (1 – cos 2πx cos 2πy) exp(–t), (x, y, t) ∈ [–1, 1] × [–1, 1] × (0,∞).

When we take the time step �t = 0.01 and the number of nodes in every direction N =
100, from Theorem 8, the theoretical errors between the analytical solution and the CNCS
solutions un

N (n = 1, 2, . . . , K) should be O(10–4).
By the CNCS model, Problem 5, we can compute out the CNCS solutions at T = 0.0,

0.3, 0.5, 0.9, depicted in photos (a) in Figs. 1–4, respectively. The analytical solutions at the
same time nodes are depicted in photos (b) in Figs. 1–4, respectively. The errors between
analytical solutions and the CNCS solutions at t = 0.0, 0.3, 0.5, 0.9 are depicted in photos
(c) of Figs. 1–4, respectively. Photos (a) and (b) in Figs. 1–4 are almost the same, which
indicates that the numerical computational errors are accorded with the theoretical ones,
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Figure 1 (a) The CNCS solution when t = 0.0. (b) The analytical solution when t = 0.0. (c) The errors between
the analytical solution and CNCS solution at t = 0.0

because both errors are not greater than O(10–4). This implies that the CNCS model is
efficient and feasible for solving the 2D telegraph equations.

4.2 Example 2
In the 2D telegraph equation (1), we still took �̄ = [–1, 1] × [–1, 1]; L = Ĉ = R = G = 1,
that is, α = 1, β = 2, μ = 1; ϕ(±1, y, t) = 0 (–1 ≤ y ≤ 1 and t ∈ [0,∞)), ϕ(x,±1, t) =
– sinπx exp(0.5t) (–1 ≤ x ≤ 1 and t ∈ [0,∞)), H(x, y) = sinπx cosπy, G(x, y) = 0.5 sinπx ×
cosπy, and f (x, y, t) = (2.75 + 2π2) sinπx cosπy exp(0.5t). Thus we can find the following
analytical solutions for the telegraph equations (1):

u(x, y, t) = sinπx cosπy exp(0.5t), (x, y, t) ∈ [–1, 1] × [–1, 1] × (0,∞).
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Figure 2 (a) The CNCS solution when t = 0.3. (b) The analytical solution when t = 0.3. (c) The errors between
the analytical solution and CNCS solution at t = 0.3

When we take the time step �t = 0.01 and the number of nodes in every direction N =
100, by Theorem 8 the theoretical errors between the analytical solution and the CNCS
solutions un

N (n = 1, 2, . . . , K) still is O(10–4).
With the CNCS model, Problem 5, we compute out the CNCS solution at T = 0.9 and

depict it in photo (a) of Fig. 5. The analytical solutions at the same time node is depicted
in photo (b) of Fig. 5. We also compute out the the error between the analytical solution
and CNCS solution at T = 0.9 and depict it in photo (c), which shows that the numerical
errors are not greater than O(10–4). This further explains that the CNCS model, Problem 5,
is efficient and feasible for finding the numerical solutions of the 2D telegraph equations.
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Figure 3 (a) The CNCS solution when t = 0.5. (b) The analytical solution when t = 0.5. (c) The errors between
the analytical solution and CNCS solution at t = 0.5

Remark 2 The accuracy of the CNCS solutions is far higher than other numerical meth-
ods, for example, the time–space FEM. For instance, in [10], though the time step is taken
as 0.0025 and the space step is taken as 0.0000625, the accuracy of the time–space FEM
solutions only attains 10–3, whereas our time-step is only 0.01 and N = 100, or, equiva-
lently, the space step is also taken as 0.01, but the accuracy of the CNCS solutions can
attain 10–6.

5 Conclusions and discussion
In this work, we have established the CNCS model by means of the Chebyshev polynomi-
als for the 2D telegraph equations and discussed the existence, uniqueness, stability, and
convergence of the CNCS solutions. We have also used two sets of numerical experiments
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Figure 4 (a) The CNCS solution when t = 0.9. (b) The analytical solution when t = 0.9. (c) The errors between
the analytical solution and CNCS solution at t = 0.9

to check the feasibility and effectiveness of the CNCS model and to verity that the numer-
ical computing consequences accord with the theoretical ones. Moreover, we have shown
that the CNCS model is very valid for solving the 2D telegraph equations.

Even if we only study the CNCS method for the 2D telegraph equations, the CNCS
method can be easily and effectively used to solve for the telegraph equations in the three-
dimensional space or the telegraph equations with complex geometric domains.

However, just as mentioned in [8] and [9], to ensure the CNCS solutions to attain the
sufficiently high accuracy, we need to choose large N . Thus it causes large errors in the
elements of the matrix, and the rounding errors are accumulated very quickly in the nu-
merical computations. It is necessary to settle the key issue. We intend to use a proper
orthogonal decomposition to reduce the CNCS model into the reduced-order CNCS for-
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Figure 5 (a) The CNCS solution when t = 0.9. (b) The analytical solution when t = 0.9. (c) The errors between
the analytical solution and CNCS solution at t = 0.9

mat with very few unknowns in other paper, so that it can greatly lessen the accumulation
of the rounding errors.
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